Copied to
clipboard

G = D5×C33order 270 = 2·33·5

Direct product of C33 and D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: D5×C33, C5⋊(C32×C6), (C3×C15)⋊7C6, C152(C3×C6), (C32×C15)⋊4C2, SmallGroup(270,23)

Series: Derived Chief Lower central Upper central

C1C5 — D5×C33
C1C5C15C3×C15C32×C15 — D5×C33
C5 — D5×C33
C1C33

Generators and relations for D5×C33
 G = < a,b,c,d,e | a3=b3=c3=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 224 in 112 conjugacy classes, 84 normal (6 characteristic)
C1, C2, C3, C5, C6, C32, D5, C15, C3×C6, C33, C3×D5, C3×C15, C32×C6, C32×D5, C32×C15, D5×C33
Quotients: C1, C2, C3, C6, C32, D5, C3×C6, C33, C3×D5, C32×C6, C32×D5, D5×C33

Smallest permutation representation of D5×C33
On 135 points
Generators in S135
(1 134 69)(2 135 70)(3 131 66)(4 132 67)(5 133 68)(6 121 71)(7 122 72)(8 123 73)(9 124 74)(10 125 75)(11 126 61)(12 127 62)(13 128 63)(14 129 64)(15 130 65)(16 101 81)(17 102 82)(18 103 83)(19 104 84)(20 105 85)(21 91 86)(22 92 87)(23 93 88)(24 94 89)(25 95 90)(26 96 76)(27 97 77)(28 98 78)(29 99 79)(30 100 80)(31 116 51)(32 117 52)(33 118 53)(34 119 54)(35 120 55)(36 106 56)(37 107 57)(38 108 58)(39 109 59)(40 110 60)(41 111 46)(42 112 47)(43 113 48)(44 114 49)(45 115 50)
(1 34 19)(2 35 20)(3 31 16)(4 32 17)(5 33 18)(6 36 21)(7 37 22)(8 38 23)(9 39 24)(10 40 25)(11 41 26)(12 42 27)(13 43 28)(14 44 29)(15 45 30)(46 76 61)(47 77 62)(48 78 63)(49 79 64)(50 80 65)(51 81 66)(52 82 67)(53 83 68)(54 84 69)(55 85 70)(56 86 71)(57 87 72)(58 88 73)(59 89 74)(60 90 75)(91 121 106)(92 122 107)(93 123 108)(94 124 109)(95 125 110)(96 126 111)(97 127 112)(98 128 113)(99 129 114)(100 130 115)(101 131 116)(102 132 117)(103 133 118)(104 134 119)(105 135 120)
(1 14 9)(2 15 10)(3 11 6)(4 12 7)(5 13 8)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 56 51)(47 57 52)(48 58 53)(49 59 54)(50 60 55)(61 71 66)(62 72 67)(63 73 68)(64 74 69)(65 75 70)(76 86 81)(77 87 82)(78 88 83)(79 89 84)(80 90 85)(91 101 96)(92 102 97)(93 103 98)(94 104 99)(95 105 100)(106 116 111)(107 117 112)(108 118 113)(109 119 114)(110 120 115)(121 131 126)(122 132 127)(123 133 128)(124 134 129)(125 135 130)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)(42 45)(43 44)(47 50)(48 49)(52 55)(53 54)(57 60)(58 59)(62 65)(63 64)(67 70)(68 69)(72 75)(73 74)(77 80)(78 79)(82 85)(83 84)(87 90)(88 89)(92 95)(93 94)(97 100)(98 99)(102 105)(103 104)(107 110)(108 109)(112 115)(113 114)(117 120)(118 119)(122 125)(123 124)(127 130)(128 129)(132 135)(133 134)

G:=sub<Sym(135)| (1,134,69)(2,135,70)(3,131,66)(4,132,67)(5,133,68)(6,121,71)(7,122,72)(8,123,73)(9,124,74)(10,125,75)(11,126,61)(12,127,62)(13,128,63)(14,129,64)(15,130,65)(16,101,81)(17,102,82)(18,103,83)(19,104,84)(20,105,85)(21,91,86)(22,92,87)(23,93,88)(24,94,89)(25,95,90)(26,96,76)(27,97,77)(28,98,78)(29,99,79)(30,100,80)(31,116,51)(32,117,52)(33,118,53)(34,119,54)(35,120,55)(36,106,56)(37,107,57)(38,108,58)(39,109,59)(40,110,60)(41,111,46)(42,112,47)(43,113,48)(44,114,49)(45,115,50), (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,76,61)(47,77,62)(48,78,63)(49,79,64)(50,80,65)(51,81,66)(52,82,67)(53,83,68)(54,84,69)(55,85,70)(56,86,71)(57,87,72)(58,88,73)(59,89,74)(60,90,75)(91,121,106)(92,122,107)(93,123,108)(94,124,109)(95,125,110)(96,126,111)(97,127,112)(98,128,113)(99,129,114)(100,130,115)(101,131,116)(102,132,117)(103,133,118)(104,134,119)(105,135,120), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115)(121,131,126)(122,132,127)(123,133,128)(124,134,129)(125,135,130), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119)(122,125)(123,124)(127,130)(128,129)(132,135)(133,134)>;

G:=Group( (1,134,69)(2,135,70)(3,131,66)(4,132,67)(5,133,68)(6,121,71)(7,122,72)(8,123,73)(9,124,74)(10,125,75)(11,126,61)(12,127,62)(13,128,63)(14,129,64)(15,130,65)(16,101,81)(17,102,82)(18,103,83)(19,104,84)(20,105,85)(21,91,86)(22,92,87)(23,93,88)(24,94,89)(25,95,90)(26,96,76)(27,97,77)(28,98,78)(29,99,79)(30,100,80)(31,116,51)(32,117,52)(33,118,53)(34,119,54)(35,120,55)(36,106,56)(37,107,57)(38,108,58)(39,109,59)(40,110,60)(41,111,46)(42,112,47)(43,113,48)(44,114,49)(45,115,50), (1,34,19)(2,35,20)(3,31,16)(4,32,17)(5,33,18)(6,36,21)(7,37,22)(8,38,23)(9,39,24)(10,40,25)(11,41,26)(12,42,27)(13,43,28)(14,44,29)(15,45,30)(46,76,61)(47,77,62)(48,78,63)(49,79,64)(50,80,65)(51,81,66)(52,82,67)(53,83,68)(54,84,69)(55,85,70)(56,86,71)(57,87,72)(58,88,73)(59,89,74)(60,90,75)(91,121,106)(92,122,107)(93,123,108)(94,124,109)(95,125,110)(96,126,111)(97,127,112)(98,128,113)(99,129,114)(100,130,115)(101,131,116)(102,132,117)(103,133,118)(104,134,119)(105,135,120), (1,14,9)(2,15,10)(3,11,6)(4,12,7)(5,13,8)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,56,51)(47,57,52)(48,58,53)(49,59,54)(50,60,55)(61,71,66)(62,72,67)(63,73,68)(64,74,69)(65,75,70)(76,86,81)(77,87,82)(78,88,83)(79,89,84)(80,90,85)(91,101,96)(92,102,97)(93,103,98)(94,104,99)(95,105,100)(106,116,111)(107,117,112)(108,118,113)(109,119,114)(110,120,115)(121,131,126)(122,132,127)(123,133,128)(124,134,129)(125,135,130), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44)(47,50)(48,49)(52,55)(53,54)(57,60)(58,59)(62,65)(63,64)(67,70)(68,69)(72,75)(73,74)(77,80)(78,79)(82,85)(83,84)(87,90)(88,89)(92,95)(93,94)(97,100)(98,99)(102,105)(103,104)(107,110)(108,109)(112,115)(113,114)(117,120)(118,119)(122,125)(123,124)(127,130)(128,129)(132,135)(133,134) );

G=PermutationGroup([[(1,134,69),(2,135,70),(3,131,66),(4,132,67),(5,133,68),(6,121,71),(7,122,72),(8,123,73),(9,124,74),(10,125,75),(11,126,61),(12,127,62),(13,128,63),(14,129,64),(15,130,65),(16,101,81),(17,102,82),(18,103,83),(19,104,84),(20,105,85),(21,91,86),(22,92,87),(23,93,88),(24,94,89),(25,95,90),(26,96,76),(27,97,77),(28,98,78),(29,99,79),(30,100,80),(31,116,51),(32,117,52),(33,118,53),(34,119,54),(35,120,55),(36,106,56),(37,107,57),(38,108,58),(39,109,59),(40,110,60),(41,111,46),(42,112,47),(43,113,48),(44,114,49),(45,115,50)], [(1,34,19),(2,35,20),(3,31,16),(4,32,17),(5,33,18),(6,36,21),(7,37,22),(8,38,23),(9,39,24),(10,40,25),(11,41,26),(12,42,27),(13,43,28),(14,44,29),(15,45,30),(46,76,61),(47,77,62),(48,78,63),(49,79,64),(50,80,65),(51,81,66),(52,82,67),(53,83,68),(54,84,69),(55,85,70),(56,86,71),(57,87,72),(58,88,73),(59,89,74),(60,90,75),(91,121,106),(92,122,107),(93,123,108),(94,124,109),(95,125,110),(96,126,111),(97,127,112),(98,128,113),(99,129,114),(100,130,115),(101,131,116),(102,132,117),(103,133,118),(104,134,119),(105,135,120)], [(1,14,9),(2,15,10),(3,11,6),(4,12,7),(5,13,8),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,56,51),(47,57,52),(48,58,53),(49,59,54),(50,60,55),(61,71,66),(62,72,67),(63,73,68),(64,74,69),(65,75,70),(76,86,81),(77,87,82),(78,88,83),(79,89,84),(80,90,85),(91,101,96),(92,102,97),(93,103,98),(94,104,99),(95,105,100),(106,116,111),(107,117,112),(108,118,113),(109,119,114),(110,120,115),(121,131,126),(122,132,127),(123,133,128),(124,134,129),(125,135,130)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39),(42,45),(43,44),(47,50),(48,49),(52,55),(53,54),(57,60),(58,59),(62,65),(63,64),(67,70),(68,69),(72,75),(73,74),(77,80),(78,79),(82,85),(83,84),(87,90),(88,89),(92,95),(93,94),(97,100),(98,99),(102,105),(103,104),(107,110),(108,109),(112,115),(113,114),(117,120),(118,119),(122,125),(123,124),(127,130),(128,129),(132,135),(133,134)]])

108 conjugacy classes

class 1  2 3A···3Z5A5B6A···6Z15A···15AZ
order123···3556···615···15
size151···1225···52···2

108 irreducible representations

dim111122
type+++
imageC1C2C3C6D5C3×D5
kernelD5×C33C32×C15C32×D5C3×C15C33C32
# reps112626252

Matrix representation of D5×C33 in GL4(𝔽31) generated by

25000
02500
0050
0005
,
25000
0100
00250
00025
,
25000
0500
0050
0005
,
1000
0100
0001
003018
,
30000
03000
0001
0010
G:=sub<GL(4,GF(31))| [25,0,0,0,0,25,0,0,0,0,5,0,0,0,0,5],[25,0,0,0,0,1,0,0,0,0,25,0,0,0,0,25],[25,0,0,0,0,5,0,0,0,0,5,0,0,0,0,5],[1,0,0,0,0,1,0,0,0,0,0,30,0,0,1,18],[30,0,0,0,0,30,0,0,0,0,0,1,0,0,1,0] >;

D5×C33 in GAP, Magma, Sage, TeX

D_5\times C_3^3
% in TeX

G:=Group("D5xC3^3");
// GroupNames label

G:=SmallGroup(270,23);
// by ID

G=gap.SmallGroup(270,23);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-5,5404]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽